A General Generalization of Jordan’s Inequality and a Refinement of L. Yang’s Inequality

نویسندگان

  • FENG QI
  • JIAN CAO
چکیده

In this article, for t ≥ 2, a general generalization of Jordan’s inequality Pn k=1 μk θt − xt k ≤ sin x x − sin θ θ ≤nk=1 ωk θt − xt k for n ∈ N and θ ∈ (0, π] is established, where the coefficients μk and ωk defined by recursing formulas (11) and (12) are the best possible. As an application, L. Yang’s inequality is refined.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Generalization of Jordan’s Inequality and an Application

In this article, a new generalization of Jordan’s inequality n ∑ k=1 μk ( θ − x )k ≤ sinx x − sin θ θ ≤ n ∑ k=1 ωk ( θ − x )k for t ≥ 2, n ∈ N and θ ∈ (0, π] is established, where the coefficients μk and ωk defined by recursion formulas (11) and (12) are the best possible. As an application, Yang’s inequality is refined.

متن کامل

Sharpness and generalization of Jordan's inequality and its application

In this paper we sharpen and generalize the Jordan’s inequality, our results unify and optimize some corresponding known results in the recent papers. As application, the obtained results are used to improve the wellknown L. Yang’s inequality.

متن کامل

On the generalization of Trapezoid Inequality for functions of two variables with bounded variation and applications

In this paper, a generalization of trapezoid inequality for functions of two independent variables with bounded variation and some applications are given.

متن کامل

Improved logarithmic-geometric mean inequality and its application

In this short note, we present a refinement of the logarithmic-geometric mean inequality. As an application of our result, we obtain an operator inequality associated with geometric and logarithmic means.

متن کامل

Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition

‎Some functional inequalities‎ ‎in variable exponent Lebesgue spaces are presented‎. ‎The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non‎- ‎increasing function which is‎‎$$‎‎int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleq‎‎Cint_0^infty f(x)^{p(x)}u(x)dx‎,‎$$‎ ‎is studied‎. ‎We show that the exponent $p(.)$ for which these modular ine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007